Scheda NISP software maintenance setup FINAL




Informazioni generali

Laboratorio dedicato alla manutenzione del software applicativo delle unità di controllo e processamento dati di NISP a bordo della missione Euclid

NISP software maintenance setup

Progetto

R & D

Laboratorio

RSN5

RSN1

Attività: Nuova; Data inizio: 2022; Data fine: 2029

eduardo.medinaceli eduardo.medinaceli@inaf.it

Il laboratorio di manutenzione del software di bordo delle unità di controllo
e data processing di NISP consente il test di tutte le funzionalità dello
strumento e la qualità dei dati prodotti che sono gestiti da una Instrument Work
Station.
Il sistema permette l’operatività e test indipendente della ICU, ed una
interfaccia con la DPU per lo sviluppo software, supportato da una
infrastruttura computazionale completa.

Il setup sarà disponibile per tutta la durata della missione
Euclid (6 anni più stensione). Inoltre, il setup è equipaggiato con sistemi stand-alone di lettura degli
ASIC per il trouble-shooting, sviluppo e test di nuove procedure operative
dei rivelatori H2RG. Il sistema consente anche la caratterizzazione completa di
tutti i segnali elettrici e digitali degli ASCI

At OAS is present a laboratory
dedicated to software maintenance activities of the Instrument Control Unit (ICU)
and Data Processing Unit (DPU) of the NISP instrument of the Euclid mission.

The setup is composed by the qualification units of the ICU and DPU interfaced
with the flight-like readout electronics (ASIC) of the Teledyne’s H2RG near-infrared
detectors. An EGSE system for the commanding and control, and an infrastructure for data storage; and the qualification models of the filter and grism wheels
assemblies plus the calibration unit. The setup is fully representative of all the
NISP features and allows the development, test, and validation of potentially
new versions of the on-board software of the units governing NISP. And offers a
test bench for new flight procedures.

Tecnologie per Astronomia Ottica ed Infrarossa

Tecnologie Informatiche e software

Tecnologie per osservazioni da spazio

Infrastrutture dallo spazio per l’osservazione dell Universo (sviluppo/operazioni)


Team Summary

15. Personale INAF coinvolto
Numero di partecipanti INAF al progetto: 17
Struttura Nfte N0 TI 2022 TI 2023 TI 2024 TD 2022 TD 2023 TD 2024 Nex Extra
OAS BOLOGNA 4 0 0.30 0.30 0.30 0.20 0.20 0.20 1 0.10
O.A. TORINO 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00
O.A. PADOVA 0 0 0 0 0 0.00 0.00 0.00 0 0.00
Totali 4 0 0.30 0.30 0.30 0.20 0.20 0.20 1 0.10
16. Personale Associato INAF coinvolto
Numero di partecipanti Associati INAF: 2
# Struttura TI 2022 TI 2023 TI 2024 TD 2022 TD 2023 TD 2024 Extra
1 INFN Sezione Padova 0.00 0.00 0.00 0 0 0 0.00
2 INAF- OAS 0.00 0.00 0.00 0 0 0 0.00
Totali 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fondi a sostegno

21. Totale fondi a disposizione (dato aggregato, k€)
Certi 2022 Certi 2023 Certi 2024 Presunti 2022 Presunti 2023 Presunti 2024
2.0 0.0 0.0 0.0 0.0 0.0

Produzione scientifica e tecnologica

22. Produzione scientifica e tecnologica - Highlights
# DOI Descrizione Azione
1 https://doi.org/10.1117/12.2232941 Title: Euclid Near-Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C. Abstract: The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM). Authors: Thierry Maciaszek, Anne Ealet, Knud Jahnke, Eric Prieto, Rémi Barbier, Yannick Mellier, Florent Beaumont, William Bon, Anne Bonnefoi, Michael Carle, Amandine Caillat, Anne Costille, Doriane Dormoy, Franck Ducret, Christophe Fabron, Aurélien Febvre, Benjamin Foulon, Jose Garcia, Jean-Luc Gimenez, Emmanuel Grassi, Philippe Laurent, David Le Mignant, Laurent Martin, Christelle Rossin, Tony Pamplona, Patrice Sanchez, Sébastien Vives, Jean Claude Clémens, William Gillard, Mathieu Niclas, Aurélia Secroun, Benoit Serra, Bogna Kubik, Sylvain Ferriol, Jérôme Amiaux, Jean Christophe Barrière, Michel Berthe, Cyrille Rosset, Juan Francisco Macias-Perez, Natalia Auricchio, Adriano De Rosa, Enrico Franceschi, Gian Paolo Guizzo, Gianluca Morgante, Francesca Sortino, Massimo Trifoglio, Luca Valenziano, Laura Patrizii, T. Chiarusi, F. Fornari, F. Giacomini, A. Margiotta, N. Mauri, L. Pasqualini, G. Sirri, M. Spurio, M. Tenti, R. Travaglini, Stefano Dusini, F. Dal Corso, F. Laudisio, C. Sirignano, L. Stanco, S. Ventura, E. Borsato, Carlotta Bonoli, Favio Bortoletto, Andrea Balestra, Maurizio D'Alessandro, Eduardo Medinaceli, Ruben Farinelli, Leonardo Corcione, Sebastiano Ligori, Frank Grupp, Carolin Wimmer, Felix Hormuth, Gregor Seidel, Stefanie Wachter, Cristóbal Padilla, Mikel Lamensans, Ricard Casas, Ivan Lloro, Rafael Toledo-Moreo, Jaime Gomez, Carlos Colodro-Conde, David Lizán, Jose Javier Diaz, Per B. Lilje, Corinne Toulouse-Aastrup, Michael I. Andersen, Anton N. Sørensen, Peter Jakobsen, Allan Hornstrup, Niels-Christian Jessen, Cédric Thizy, Warren Holmes, Ulf Israelsson, Michael Seiffert, Augustyn Waczynski, René J. Laureijs, Giuseppe Racca, Jean-Christophe Salvignol, Tobias Boenke, and Paolo Strada
2 https://doi.org/10.1117/12.926004 Title: The onboard electronics for the near-infrared spectrograph and photometer (NISP) of the EUCLID Mission. Abstract: The Near Infrared Spectrograph and Photometer (NISP) is one of the instruments on board the EUCLID mission. The focal plane array (FPA) consists of 16 HAWAII-2RG HgCdTe detectors from Teledyne Imaging Scientific (TIS), for NIR imaging in three bands (Y, J, H) and slitless spectroscopy in the range 0.9−2µm. Low total noise measurements (i.e. total noise < 8 electrons) are achieved by operating the detectors in multiple non-destructive readout mode for the implementation of both the Fowler and Up-The-Ramp (UTR) sampling, which also enables the detection and removal of cosmic ray events. The large area of the NISP FPA and the limited satellite telemetry available impose to perform the required data processing on board, during the observations. This requires a well optimized on-board data processing pipeline, and high-performance control electronics, suited to cope with the time constraints of the NISP acquisition sequences. This paper describes the architecture of the NISP on-board electronics, which take charge of several tasks, including the driving of each individual HAWAII-2RG detectors through their SIDECAR ASICs, the data processing, inclusive of compression and storage, and the instrument control tasks. We describe the implementation of the processing power needed for the demanding on-board data reduction. We also describe the basic operational modes that will be managed by the system during the mission, along with data flow and the Telemetry/TeleCommands flow. This paper reports the NISP on-board electronics architecture status at the end of the Phase B1, and it is presented on behalf of the Euclid Consortium. Authors: Leonardo Corcione, Sebastiano Ligori, Favio Bortoletto, Carlotta Bonoli, Luca Valenziano, Rafael Toledo-Moreo, Maurizio D'Alessandro, Massimo Trifoglio, Gianluca Morgante, Carlos Colodro-Conde, Rafael Rebolo-López, Jacinto Muñoz, and Isidro Villò
3 https://doi.org/10.1117/12.2234262 Title: EGSE customization for the Euclid NISP Instrument AIV/AIT activities. Abstract: The Near Infrared Spectro-Photometer (NISP) on board the Euclid ESA mission will be developed and tested at various levels of integration by using various test equipment. The Electrical Ground Support Equipment (EGSE) shall be required to support the assembly, integration, verification and testing (AIV/AIT) and calibration activities at instrument level before delivery to ESA, and at satellite level, when the NISP instrument is mounted on the spacecraft. In the case of the Euclid mission this EGSE will be provided by ESA to NISP team, in the HW/SW framework called "CCS Lite", with a possible first usage already during the Warm Electronics (WE) AIV/AIT activities. In this paper we discuss how we will customize that "CCS Lite" as required to support both the WE and Instrument test activities. This customization will primarily involve building the NISP Mission Information Base (the CCS MIB tables) by gathering the relevant data from the instrument sub-units and validating these inputs through specific tools. Secondarily, it will imply developing a suitable set of test sequences, by using uTOPE (an extension to the TCL scripting language, included in the CCS framework), in order to implement the foreseen test procedures. In addition and in parallel, custom interfaces shall be set up between the CCS and the NI-IWS (the NISP Instrument Workstation, which will be in use at any level starting from the WE activities), and also between the CCS and the TCC (the Telescope Control and command Computer, to be only and specifically used during the instrument level tests). Authors: E. Franceschi, M. Trifoglio, F. Gianotti, V. Conforti, J. J. Andersen, J. B. Stephen, L. Valenziano, N. Auricchio, A. Bulgarelli, A. De Rosa, V. Fioretti, E. Maiorano, G. Morgante, L. Nicastro, F. Sortino, A. Zoli, A. Balestra, D. Bonino, C. Bonoli, F. Bortoletto, V. Capobianco, L. Corcione, F. Dal Corso, S. Debei, D. Di Ferdinando, S. Dusini, R. Farinelli, F. Fornari, F. Giacomini, G. P. Guizzo, F. Laudisio, S. Ligori, N. Mauri, E. Medinaceli, L. Patrizii, C. Sirignano, G. Sirri, L. Stanco, M. Tenti, C. Valieri, and S. Ventura
4 https://doi.org/10.1117/12.2234219 Title: Instrument workstation for the EGSE of the Near Infrared Spectro-Photometer instrument (NISP) of the EUCLID mission. Abstract: The NISP instrument on board the Euclid ESA mission will be developed and tested at different levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. The NISP Instrument Workstation (NI-IWS) will be part of the EGSE configuration that will support the NISP AIV/AIT activities from the NISP Warm Electronics level up to the launch of Euclid. One workstation is required for the NISP EQM/AVM, and a second one for the NISP FM. Each workstation will follow the respective NISP model after delivery to ESA for Payload and Satellite AIV/AIT and launch. At these levels the NI-IWS shall be configured as part of the Payload EGSE, the System EGSE, and the Launch EGSE, respectively. After launch, the NI-IWS will be also re-used in the Euclid Ground Segment in order to support the Commissioning and Performance Verification (CPV) phase, and for troubleshooting purposes during the operational phase. The NI-IWS is mainly aimed at the local storage in a suitable format of the NISP instrument data and metadata, at local retrieval, processing and display of the stored data for on-line instrument assessment, and at the remote retrieval of the stored data for off-line analysis on other computers. We describe the design of the IWS software that will create a suitable interface to the external systems in each of the various configurations envisaged at the different levels, and provide the capabilities required to monitor and verify the instrument functionalities and performance throughout all phases of the NISP lifetime. Authors: M. Trifoglio, F. Gianotti, V. Conforti, E. Franceschi, J. B. Stephen, A. Bulgarelli, V. Fioretti, E. Maiorano, L. Nicastro, L. Valenziano, A. Zoli, N. Auricchio, A. Balestra, D. Bonino, C. Bonoli, F. Bortoletto, V. Capobianco, T. Chiarusi, L. Corcione, S. Debei, A. De Rosa, S. Dusini, F. Fornari, F. Giacomini, G. P. Guizzo, S. Ligori, A. Margiotta, N. Mauri, E. Medinaceli, G. Morgante, L. Patrizii, C. Sirignano, G. Sirri, F. Sortino, L. Stanco, and M. Tenti
5 https://doi.org/10.1117/12.2232856 Title: On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission Abstract: The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link. Authors: Carlotta Bonoli, Andrea Balestra, Favio Bortoletto, Maurizio D'Alessandro, Ruben Farinelli, Eduardo Medinaceli, John Stephen, Enrico Borsato, Stefano Dusini, Fulvio Laudisio, Chiara Sirignano, Sandro Ventura, Natalia Auricchio, Leonardo Corcione, Enrico Franceschi, Sebastiano Ligori, Gianluca Morgante, Laura Patrizii, Gabriele Sirri, Massimo Trifoglio, and Luca Valenziano
6 https://doi.org/10.1117/12.2313240 Title: The application software of the instrument control unit of Euclid-NISP: ready for qualification tests. Abstract: In this paper we describe the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management. Authors: Sebastiano Ligori, Leonardo Corcione, Vito Capobianco, Donata Bonino, Gabriele Sirri, Claudia Valieri, Federico Fornari, Francesco Giacomini, Laura Patrizii, Riccardo Travaglini, Stefano Dusini, Fulvio Laudisio, Chiara Sirignano, Luca Valenziano, Natalia Auricchio, Enrico Franceschi, Andrea Balestra, Paola Maria Battaglia, Carlotta Bonoli, Enrico Borsato, Favio Bortoletto, Tommaso Chiarusi, Flavio Dal Corso, Donato Di Ferdinando, Ruben Farinelli, Anna Gregorio, Gian Paolo Guizzo, Elisabetta Maiorano, Annarita Margiotta, Nicoletta Mauri, Eduardo Medinaceli, Gianluca Morgante, Stefano Silvestri, Francesca Sortino, Maurizio Spurio, Luca Stanco, John B. Stephen, Matteo Tenti, Massimo Trifoglio, and Sandro Ventura
7 https://doi.org/10.1117/12.2232313 Title: Detailed design and first tests of the application software for the instrument control unit of Euclid-NISP. Abstract: In this paper we describe the detailed design of the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management. We briefly review the main requirements driving the design and the architecture of the software that is approaching the Critical Design Review level. The interaction with the data processing unit (DPU), which is the intelligent subunit controlling the detector system, is described in detail, as well as the concept for the implementation of the failure detection, isolation and recovery (FDIR) algorithms. The first version of the software is under development on a Breadboard model produced by AIRBUS/CRISA. We describe the results of the tests and the main performances and budgets. Authors: S. Ligori, L. Corcione, V. Capobianco, D. Bonino, G. Sirri, F. Fornari, F. Giacomini, L. Patrizii, L. Valenziano, R. Travaglini, C. Colodro, F. Bortoletto, C. Bonoli, T. Chiarusi, A. Margiotta, N. Mauri, L. Pasqualini, M. Spurio, M. Tenti, F. Dal Corso, S. Dusini, F. Laudisio, C. Sirignano, L. Stanco, S. Ventura, N. Auricchio, A. Balestra, E. Franceschi, G. Morgante, M. Trifoglio, E. Medinaceli, G. P. Guizzo, S. Debei, and J. B. Stephen
8 https://doi.org/10.1117/12.2056819 Title: The data processing unit of the NISP instrument of the Euclid mission. Abstract: In this paper we describe the status of the development of the Data Processing Unit (DPU) of the Near-Infrared Spectro- Photometer (NISP) of the Euclid mission. The architecture of this unit is described, along with the Detector Control Unit (DCU), which operates the 16 HAWAII-2RG (H2RG), composing the NISP Focal Plane Array (FPA), by an equivalent number of SIDECAR systems. The design is evolved from the previous phases, with the implementation of a different approach in the data processing and consequently with the implementation of a large data buffer. The approach in implementing failure tolerance on this unit is described in detail; effort has been made to realize an architecture in which the impact of a single failure can be limited, in the worst case, to the loss of only one detector (out of 16). The main requirements driving the design are also described, in order to emphasize the most challenging areas and the foreseen solutions. The foreseen implementation of the on-board processing pipeline is also described, along with the basic interactions with the Instrument Control Unit (ICU) and with the Mass Memory Unit (MMU). Finally, we outline the on going activity for DPU/DCU bread-boarding. Authors: L. Corcione, S. Ligori, V. Capobianco, F. Bortoletto, C. Bonoli, M. D'Alessandro, A. Longoni, R. Grimoldi, and L. Valenziano
9 https://doi.org/10.1117/12.2562298 Title: The application software for the instrument control unit of the NISP instrument of the Euclid mission: final status and lessons learned after delivery of the flight version. Abstract: In this paper we describe the final status of the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission, as the version for Flight has been tested and delivered to the industry for the next integration phases. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management. We will describe in particular the final tests and the main obstacles which had to be faced in order to implement an efficient and reliable interface with all the NISP subsystems. Authors: S. Ligori, L. Corcione, V. Capobianco, D. Bonino, G. Sirri, C. Valieri, F. Giacomini, L. Patrizii, L. Valenziano, N. Auricchio, S. Davini, S. Di Domizio, S. Dusini, Alessio Caminata, Gemma Testera, Silvano Tosi.
10 https://doi.org/10.1117/12.2561530 Title: Data processing unit’s hardware and application software description of the Near Infrared Spectro-Photometer: Euclid mission. Abstract: A description of the Data Processing Unit’s (DPU) hardware and the Application Software (ASW) of the Near Infrared Spectro-Photometer (NISP) at EUCLID mission is given. NISP is composed by a focal plane of 16 H2RG HAWAII near infrared detectors (0.9÷2 μm) interfaced with 16 ASICs, both produced by Teledyne. The complete system is handled by two identical DPU units running in parallel and independently with the same ASW, and each governing 8 detector chains. Flight DPU units were used for validating the ASW as well as a single EQM model of the DPU (fully representative of the Flight model). Details of the DPU hardware components and its most relevant performances are described, focusing on the Digital Control Units’ handling of data coming from the ASICs. It is also described the ASW architecture emphasizing the onboard data pre-processing in which a series of on-line operations are performed to reduce the amount of data sent to ground, thus guaranteeing its consistency and quality (i.e. multi accumulation charge slope fit calculation, quality factor evaluation, reference pixel correction, saturation pixels flagging and lossless compression). Finally, a description of the latest NISP system’s test campaigns focusing on those for the Electromagnetic Compatibility, Susceptibility and Thermal Vacuum is provided; and a detail description of the results used to successfully validate the DPU ASW. Authors: E. Medinaceli, R. Farinelli, A. Balestra, C. Sirignano, S. Dusini, C. Veri, L. Valenziano, N. Auricchio, P. Battaglia, E. Franceschi, L. Stanco.



Informazioni Pubbliche

<p>infrared detectors;<br>cosmology;<br>software engineering;<br>space-related software standards;<br>space instrumentation;<br><br></p>

<p>Il laboratorio è interamente responsabilità dell'INAF. Questo laboratorio è gestito da un gruppo di persone con ruoli rilevanti all'interno di NISP (Euclid):<br>E. Medinaceli Data Processing Unit Application Software (DPU-ASW) manager<br>S. Ligori Instrument Control Unit&nbsp;<span style="font-family: var(--bs-font-sans-serif); font-size: 1rem;">Application Software (ICU-ASW) manager<br></span>M. Trifoglio Instrument Work Station (IWS) manager<br>E. Franceschi Ground Support Equipment (EGSE) manager<br>P. Battaglia NISP operation manager<br>N. Auricchio NISP warm unit Product Assurance manager</p>

<p>ESA Science Operation Center;<br>ESA Mission Operation Center</p>


15. Team members, Informazioni generali


15. Personale INAF coinvolto

# Nome E-mail Struttura TI Qualifica Ruolo nel Progetto FTE Impegnate (2022/2023/2024) FTE Presunte (2022/2023/2024) Extra
1 eduardo.medinaceli eduardo.medinaceli@inaf.it OAS BOLOGNA Y RICERCATORE PI X X X X X X X OK
2 ruben.farinelli ruben.farinelli@inaf.it OAS BOLOGNA Y RICERCATORE collaboratore X X X X X X X OK
3 enrico.franceschi enrico.franceschi@inaf.it OAS BOLOGNA Y TECNOLOGO collaboratore X X X X X X X OK
4 natalia.auricchio natalia.auricchio@inaf.it OAS BOLOGNA Y TECNOLOGO collaboratore X X X X X X X OK
5 adriano.derosa adriano.derosa@inaf.it OAS BOLOGNA Y C.T.E.R. collaboratore X X X X X X X OK
6 fulvio.gianotti fulvio.gianotti@inaf.it OAS BOLOGNA Y PRIMO TECNOLOGO collaboratore X X X X X X X OK
7 sebastiano.ligori sebastiano.ligori@inaf.it O.A. TORINO Y RICERCATORE ASTRONOMO collaboratore X X X X X X X OK
8 leonardo.corcione leonardo.corcione@inaf.it O.A. TORINO Y RICERCATORE ASTRONOMO collaboratore X X X X X X X OK
9 donata.bonino donata.bonino@inaf.it O.A. TORINO Y TECNOLOGO collaboratore X X X X X X X OK
10 andrea.balestra andrea.balestra@inaf.it O.A. PADOVA N PRIMO TECNOLOGO collaboratore X X X X X X X OK
11 paola.battaglia paola.battaglia@inaf.it OAS BOLOGNA N RICERCATORE collaboratore X X X X X X X OK
12 vito.capobianco vito.capobianco@inaf.it O.A. TORINO N C.T.E.R. collaboratore X X X X X X X OK
13 luca.valenziano luca.valenziano@inaf.it OAS BOLOGNA Y PRIMO RICERCATORE collaboratore X X X X X X X OK
14 vito.conforti vito.conforti@inaf.it OAS BOLOGNA Y TECNOLOGO collaboratore X X X X X X X OK
15 gianluca.morgante gianluca.morgante@inaf.it OAS BOLOGNA Y PRIMO TECNOLOGO collaboratore X X X X X X X OK
16 john.stephen john.stephen@inaf.it OAS BOLOGNA Y PRIMO RICERCATORE collaboratore X X X X X X X OK
17 filomena.schiavone filomena.schiavone@inaf.it OAS BOLOGNA Y C.T.E.R. collaboratore X X X X X X X OK

16. Personale Associato INAF coinvolto

# Nome E-mail Struttura TI Qualifica Ruolo nel Progetto FTE Impegnate (2022/2023/2024) FTE Presunte (2022/2023/2024) Extra
1 chiara.sirignano chiara.sirignano@pd.infn.it INFN Sezione Padova Y Professoressa Universitaria collaboratore [0, 0, 0] [0.7, 0.7, 0.5] 0.0
2 massimo.trifoglio massimo.trifoglio@inaf.it INAF- OAS Y Ricercatore in Pensione collaboratore [0, 0, 0] [0.3, 0.3, 0.2] 0.0

21. Fondi a Sostegno Iniziativa

Il laboratorio è finanziato prevalentemente ‘in kind’ dal progetto Euclid, con contributi alla strumentazione disponibile da parte di ASI e di ESA. In particolare, ASI ha finanziato nell’accordo di fase D l’allestimento del setup sperimentale formato dalle unità elettroniche dello strumento NISP, che sarà usato durante la fase di volo per la manutenzione del SW di bordo e delle interfacce con i detector. L’INAF, attraverso la strumentazione acquisita dal laboratorio di OAPd (ex Bortoletto), ha contribuito con altri strumenti scientifici. Il progetto del laboratorio è esclusivamente INAF.


Tabella fondi:

# Provenienza Certi 2022 (k€) Certi 2023 (k€) Certi 2024 (k€) Presun. 2022 (k€) Presun. 2023 (k€) Presun. 2024 (k€) Totale Certi (k€) Totale Presunti (k€)
1 ASI 2 0 0 0 0 0 2 0


Tabella fondi Astrofisica Fondamentale e PNRR:
# Provenienza Fondi 2022 (€) Fondi 2023 (€) Fondi 2024 (€)