Plasma Astrophysics
Plasmi
Programma
RSN4
Attività: In Itinere; Data inizio: 2020; Data fine: 2025
valerio.vittorini valerio.vittorini@inaf.it
Il programma "Plasma Astrophysics" studia i meccanismi di accelerazione di particelle nei plasmi di interesse astrofisico e si inserisce nei progetti AGILE, CTA ed ASTRI.
Tali plasmi sono responsabili dell'emissione dai 50 MeV a oltre il TeV in Pulsars, Supernova Remnants, Blazars e Galassie
(FERMI-Bubbles): tali emissioni richiedono l'accelerazione in situ di particelle fino al PeV.
La conversione di parte dell'energia magnetica e di onde elettromagnetiche in energia cinetica tramite riconnessione magnetica e instabilità Cerenkov, viene studiata con codici PIC derivati da Zeltron e codici fluidi, cinetici lineari e quasilineari d'interazione onda-particella.
In ambito di laboratorio il gruppo collabora con l'esperimento Proto-Sphera all'ENEA di Frascati.
This program studies acceleration mechanisms of particles in astrophysical plasmas and is linked to the programs AGILE,CTA and ASTRI. Such a plasmas are responsible for the emission from 50 MeV beyond TeV observed in Pulsars, SNR, Blazars and Galaxies (see Fermi-Bubbles). Theese emissions involve acceleration in situ of particles attaining PeV energies.
Magnetic and electromagnetic energy conversion in kinetic energy by magnetic reconnection and Cherenkov instability, is treated with PIC codes derived from Zeltron and fluid-kinetic codes, linear and quasi-linear of wave-particle interaction.
Regard laboratory plasma, the team collaborates with Proto-Sphera experiment at ENEA in Frascati (RM).
Fisica degli oggetti compatti galattici ed extragalattici
Fenomeni non termici, raggi cosmici e astroparticelle
Struttura | Nfte | N0 | TI 2024 | TI 2025 | TI 2026 | TD 2024 | TD 2025 | TD 2026 | Nex | Extra |
---|---|---|---|---|---|---|---|---|---|---|
IAPS ROMA | 2 | 0 | 0.20 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0 | 0.00 |
DIREZIONE SCIENTIFICA | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0 | 0.00 |
O.A. ROMA | 0 | 0 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0.00 |
Totali | 2 | 0 | 0.20 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0 | 0.00 |
# | Struttura | TI 2024 | TI 2025 | TI 2026 | TD 2024 | TD 2025 | TD 2026 | Extra |
---|---|---|---|---|---|---|---|---|
1 | CR enea Frascati | 0.20 | 0.20 | 0.00 | 0 | 0 | 0 | 0.00 |
2 | ENEA-Frascati | 0.10 | 0.10 | 0.00 | 0 | 0 | 0 | 0.00 |
3 | Dip. Fisica Univ. Pisa | 0 | 0 | 0 | 0.10 | 0.10 | 0.00 | 0.00 |
4 | MIT | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
5 | inaf ARTOV | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
6 | CR ENEA Frascati | 0.10 | 0.10 | 0.00 | 0 | 0 | 0 | 0.00 |
7 | ASI | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0.30 |
Totali | 0.40 | 0.40 | 0.00 | 0.10 | 0.10 | 0.00 | 0.30 |
Certi 2024 | Certi 2025 | Certi 2026 | Presunti 2024 | Presunti 2025 | Presunti 2026 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
High Energy Astrophysics; Plasma Astrophysics; AGILE; CTA; ASTRI; FERMI; MAGIC; ProtoSphera; Blazars modeling;
particle acceleration in high energy astrophysical sources;
INAF contribuisce alla diagnostica X per l'esperimento Proto-Sphera
ENEA Frascati (RM)
A significant fraction of magnetic energy released in explosive reconnection events can be conveyed into suprathermal particle populations, while slower events (on the Sweet-Parker time scale) only result in energized plasma bulk motion and thermal plasma heating.
Tearing and reconnection of magnetic field lines entrains topological reconfigurations which couple micro-scales, at which field lines are torn, and macro-scales, at which field lines are advected by the plasma motion.
Three categories of electron energization mechanisms have been recognized: parallel electric fields, Fermi reflection in plasmoids, and betatron acceleration [J.T. Dahlin “Prospectus on electron acceleration via magnetic reconnection” Phys. Plasmas 27, 100601 (2020); doi: 10.1063/5.0019338 ].
The classical setting of magnetic reconnection involve a current sheet that separates oppositely directed magnetic fields [H. Arnold et al “Electron Acceleration during Macroscale Magnetic Reconnection“, PHYSICAL REVIEW LETTERS 126, 135101 (2021)]. This configuration is topologically fragile: small perturbations perpendicular to the sheet can revert nearby antiparallel lines to an X-configuration, which produces alfvénic outflow jets, and a parallel electric field that can accelerate particles in a micro-scale volume.
The current sheet can be fragmented into multiple plasmoids (or flux ropes, or magnetic islands) separated by X-lines. Plasmoids can facilitate the reconnection process by raising the outflow size from the micro-scale to a meso-scale. Furthermore, reflections at plasmoids can give acceleration of the Fermi type in a volume-filling region.
Other, less explored, settings involve two-dimensional lattices of magnetic flux tubes which are subject to X-point collapses [M. Lyutikov et al “Particle acceleration in relativistic magnetic flux-merging events” J. Plasma Phys. (2017), vol. 83, 635830602 doi:10.1017/S002237781700071X ].
The above mentioned approaches do not give full account of reconnection in 3D configurations, where symmetries are absent or broken by perturbations. Developments along this line will be tracked.
[S. V. Bulanov, S. G. Shasharina and F. Pegoraro MHD MODES NEAR THE X-LINE OF A MAGNETIC CONFIGURATION, Plasma Physics and Controlled Fusion, Vol. 32, No 5. pp. 377 to 389, 1990]
[A.H. Boozer Changed paradigm of fast magnetic reconnection, 2020arXiv:2002.04409]
Another important aspect of magnetic reconnection is the capability to mediate plasma self-organization processes. The study of this aspect is one major objective of the PROTO-SPHERA experiment.
[Alladio, F., Costa, P., Mancuso, A., Micozzi, P., Papastergiou, S. & Rogier, F. 2006 Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH). Nucl. Fusion 46, S613–S624.]
[Buratti, P., Tirozzi, B., Alladio, F., & Micozzi, P. (2020). Analytical studies of PROTO-SPHERA equilibria. Journal of Plasma Physics, 86(6), 845860602. doi:10.1017/S0022377820001427]
Magnetic reconnection studies in laboratory plasmas can provide useful information on several key points, such as the trigger mechanism for explosive events, the reconnection rate, and particle energization.
[Buratti P “Magnetic reconnection and impulsive instabilities in tokamak plasmas: Some analogies with astrophysical flares” M. Tavani (eds.) A Decade of AGILE. Rendiconti Lincei 30, Supplement 1, 2019, pp. 101–106].
The “Fermi Bubbles”, two giant bubbles upper and down our galactic plane, were discovered in 2010 by the Fermi Satellite [1]. In order to find a theoretical explanation of this phenomenon we propose a model involving an electromagnetic instability (Cerenkov instability) triggered by a jet of fast moving plasma escaping from the black hole in the center of the “Milk Way” [2,3,4,5]. This jet of plasma [6] (protons and electrons), in fact, crossing the large-scale magnetic field of the galaxy induces an electromagnetic instability in the “lower hybrid” frequency range (quasi-electrostatic wave) [7]. The unstable Lower Hybrid Wave (LHW) triggered by this energetic ion beam propagates along the magnetic field lines in the plasma halo of galaxy and accelerates the electron up to hundreds of GeV. Starting from a fluid model of the galactic plasma in presence of an ion beam, a dispersion relation is obtained, that, solved in the complex domain of the frequency, allows to calculate and maximizing the growth rate of the instability as function of the plasma and beam main parameters. Successively a (relativistic) quasi-linear formulation of the LH wave-plasma-halo interaction enables to investigate the energy range to which the plasma electrons can be accelerated. The observed cut-off in X-ray and gamma-ray spectrum observed by the LAT (Large Area Telescope) [8,9] installed on the Fermi Gamma ray Space Telescope can be explained with the cut-off in the LH wave propagation below a threshold in the parallel wavenumber . This means that the resonant interaction of the wave with the halo electrons cannot exceed a certain value inthe energy.
[1] M. Su, T.R. Slatyer, D.P. Finkbeiner, APJ 724 1044 (2010).
[2] A. Cardinali, B. Coppi, 60th Annual Meeting of the APS Division of Plasma Physics, 63, 11 2018, Portland, Oregon, USA.
[3] A. Cardinali, B. Coppi, 61st Annual Meeting of the APS Division of Plasma Physics, 64, 11 2019, Fort Lauderdale, Florida, USA.
[4] V. Ricci, A. Cardinali, B. Coppi, Sherwood Theory Fusion Conference, Princeton (USA), 2019.
[5] A. Cardinali, Talk at INAF-IAPS, Area di Ricerca Tor Vergata, Roma, 5th of Feb 2021
[6] M. Su, D. P. Finkbeiner, Evidence for Gamma-Ray Jets in the Milky Way, APJ 753 (2012)
[7] B. Chang, B. Coppi, Geophys. Res. Lett. 8 1253 (1981).
[8] N. Gehrels, P. Michelson, Astropart. Phys. 11 277 (1999).
[9] W.B. Atwood et al., APJ 697 1071 (2009).
The astrophysical goal is to implement our studies and PIC codes for magnetic reconnection to energization of high energy astrophysical sources.
L'attivita' di interesse astrofisico e' gestita in INAF presso l'IAPS di Roma da personale di ruolo
(M. Tavani e V. Vittorini): ci si avvale del contributo dei professori emeriti A. Cavaliere e
B. Coppi per quanto riguarda teoria dei processi radiativi in sorgenti compatte e fisica del plasma; collaborano al programma gli associati Eloisa Menegoni e Paolo Buratti riguardo l'implementazione e la gestione di codici PIC dedicati al calcolo dello spettro energetico di particelle accelerate in processi di riconnessione magnetica e Luca Foffano che si occupa di alte energia e oggetti compatti.
Il team si avvale inoltre del contributo di personale di ruolo in ENEA di Frascati, che lavora al progetto Proto-Sphera (PS) per la produzione di plasma in laboratorio di interesse per i progetti di fusione nucleare, e che in alcune configurazioni simula la geometria di plasmi coinvolti nelle sorgenti astrofisiche: F. Alladio, P. Buratti, A. Cardinali, P. Micozzi, G. Pucella (gli ultimi 2 di prossima associazione all'INAF ma già attivi nel progetto) che forniranno esperienza e codici per lo studio della riconnessione magnetica.
Alla strumentazione della macchina partecipano A. Rubini, E. Costa, Y. Evangelista e M. Feroci, dello IAPS di Roma per la diagnostica in banda X. Stiamo pubblicando un bando per l'assunzione di due TD (1 anno rinnovabile ciascuno) per il supporto teorico e computazionale.
L'attività teorica e le simulazioni di plasmi di Proto-Sphera viene svolta all'ENEA in stretto contatto
con l'IAPS dove viene svolta la simulazione dei plasmi astrofisici da applicarsi ai modelli radiativi di sorgenti gamma elaborati dal team nel corso degli anni 2007 - 2024.
fine 2024 implementazione diagnostica X in Proto-Sphera; 2024 misure per l'individuazione di fenomeni non termici in Proto-Sphera tramite rivelatori X; 2024-2026 attivita' teorica
Alladio, F., Costa, P., Mancuso, A., Micozzi, P., Papastergiou, S. & Rogier, F. 2006 Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH). Nucl. Fusion 46, S613–S624.
Vittorini, V., Tavani, M. and Cavaliere, A. 2017, Meeting the Challenge from Bright and Fast Gamma-Ray Flares of 3C 279; 2017 ApJL 843 L23
A. Cardinali, B. Coppi, 60th Annual Meeting of the APS Division of Plasma Physics, 63, 11 2018, Portland, Oregon, USA.
A. Cardinali, B. Coppi, 61st Annual Meeting of the APS Division of Plasma Physics, 64, 11 2019, Fort Lauderdale, Florida, USA.
V. Ricci, A. Cardinali, B. Coppi, Sherwood Theory Fusion Conference, Princeton (USA), 2019.
A. Cardinali, Talk at INAF-IAPS, Area di Ricerca Tor Vergata, Roma, 5th of Feb 2021
S. V. Bulanov, S. G. Shasharina and F. Pegoraro MHD MODES NEAR THE X-LINE OF A MAGNETIC CONFIGURATION, Plasma Physics and Controlled Fusion, Vol. 32, No 5. pp. 377 to 389, 1990
Buratti, P., Tirozzi, B., Alladio, F., & Micozzi, P. (2020). Analytical studies of PROTO-SPHERA equilibria. Journal of Plasma Physics, 86(6), 845860602. doi:10.1017/S0022377820001427]
Buratti P “Magnetic reconnection and impulsive instabilities in tokamak plasmas: Some analogies with astrophysical flares” M. Tavani (eds.) A Decade of AGILE. Rendiconti Lincei 30, Supplement 1, 2019, pp. 101–106
messa a punto e gestione di codici PIC per la riconnessione magnetica.
Stiamo pubblicando un bando per l'assunzione di due TD (1 anno rinnovabile ciascuno) per il supporto teorico e computazionale.
# | Nome | Struttura | TI | Qualifica | Ruolo nel Progetto | FTE Accertate (2024/2025/2026) | FTE Presunte (2024/2025/2026) | Extra | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | valerio.vittorini | valerio.vittorini@inaf.it | IAPS ROMA | Y | RICERCATORE | coordinator | X X X | X X X | X |
![]() |
2 | marco.tavani | marco.tavani@iaps.inaf.it | DIREZIONE SCIENTIFICA | N | ASSOCIATO QUIESCENTE | member | X X X | X X X | X |
![]() |
3 | marco.feroci | marco.feroci@inaf.it | IAPS ROMA | Y | DIRIGENTE DI RICERCA | member | X X X | X X X | X |
![]() |
4 | yuri.evangelista | yuri.evangelista@inaf.it | IAPS ROMA | Y | PRIMO RICERCATORE | member | X X X | X X X | X |
![]() |
5 | enrico.costa | enrico.costa@inaf.it | IAPS ROMA | N | ASSOCIATO QUIESCENTE | member | X X X | X X X | X |
![]() |
6 | martina.cardillo | martina.cardillo@inaf.it | IAPS ROMA | Y | RICERCATORE | member | X X X | X X X | X |
![]() |
7 | alda.rubini | alda.rubini@iaps.inaf.it | IAPS ROMA | N | ASSOCIATO QUIESCENTE | member | X X X | X X X | X |
![]() |
8 | luca.foffano | luca.foffano@inaf.it | IAPS ROMA | N | RICERCATORE | member | X X X | X X X | X |
![]() |
9 | carlotta.pittori | carlotta.pittori@inaf.it | O.A. ROMA | Y | PRIMO TECNOLOGO | member | X X X | X X X | X |
![]() |
10 | giovanni.piano | giovanni.piano@inaf.it | IAPS ROMA | Y | RICERCATORE | member | X X X | X X X | X |
# | Nome | Struttura | TI | Qualifica | Ruolo nel Progetto | FTE Accertate (2024/2025/2026) | FTE Presunte (2024/2025/2026) | Extra | |
---|---|---|---|---|---|---|---|---|---|
1 | franco.alladio | franco.alladio@protosphera.it | CR enea Frascati | y | dirigente ricerca | member | [0.1, 0.1, 0] | [-1.0, -1.0, None] | -1.0 |
2 | paolo.buratti | paolo.buratti@enea.it | ENEA-Frascati | Y | Ricercatore | member | [0.1, 0.1, 0] | [-1.0, -1.0, -1.0] | -1.0 |
3 | alessandro.cardinali | alessandro.cardinali@inaf.it | CR enea Frascati | y | professore | member | [0.1, 0.1, 0] | [-1.0, -1.0, -1.0] | -1.0 |
4 | francesco.pegoraro | francesco.pegoraro@unipi.it | Dip. Fisica Univ. Pisa | N | professore pensione | member | [0.1, 0.1, 0] | [-1.0, -1.0, None] | -1.0 |
5 | bruno.coppi | coppi@psfc.mit.edu | MIT | N | professore emerito | member | [0, 0, 0] | [None, None, None] | 0.0 |
6 | alfonso.cavaliere | alfonso.cavaliere@inaf.it | inaf ARTOV | N | professore emerito | member | [0, 0, 0] | [None, None, None] | 0.0 |
7 | paolo.micozzi | paolo.micozzi@enea.it | CR ENEA Frascati | Y | Dirigente ricerca | member | [0.1, 0.1, 0] | [-1.0, -1.0, None] | -1.0 |
8 | eloisa.menegoni | eloisa.menegoni@inaf.it | ASI | y | ricercatore | member | [0, 0, 0] | [-1.0, -1.0, -1.0] | 0.3 |
fondi da DS INAF nell'ambito dei progetti collegati con CTA Plasmi
# | Provenienza | Certi 2024 (k€) | Certi 2025 (k€) | Certi 2026 (k€) | Presun. 2024 (k€) | Presun. 2025 (k€) | Presun. 2026 (k€) | Totale Certi (k€) | Totale Presunti (k€) |
---|---|---|---|---|---|---|---|---|---|
1 | INAF DS per CTA Plasmi | None | None | None | None | None | None | 0 | 0 |
# | Provenienza | Fondi 2024 (€) | Fondi 2025 (€) | Fondi 2026 (€) |
---|
F.O. | Descrizione |
---|---|
1.05.03.32.14 | Astrofisica del Plasma per CTA (ref. Marco Tavani) |