Skip to main content
Log in

Empirical modeling of the ring current

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

By using theoretical models of plasma dynamics, it is possible to reconstruct the evolution of many magnetospheric processes; nevertheless, these models need the support of both electric and magnetic field models, and they can simulate known processes only. Conversely, the empirical models are mainly based on statistical analysis; hence, they start from observations, not from processes. Statistical analyses and the derived empirical models are important complements to theoretical models and simulations since the former represent the actual conditions. The empirical models of the inner magnetosphere ion distribution MODEM and of the pitch angle distribution PADEM have proved to be successful in deriving average features of the ring current as well as in obtaining the long-term development of the ion distributions during quiet and disturbed periods. The major goals of this approach are: (1) the description of the equatorial proton population during quiet times and the quantitative characterization of their spatial and energetic distribution; (2) the evidence of some key features of the proton distribution strictly connected to the solar wind characteristics; (3) the investigation of the evolution of magnetospheric ion populations during geomagnetic disturbances and their role in the ring current development. In this paper we review the above-mentioned studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acuña, M.H., K.W. Ogilvie, D.N. Baker, S.A. Curtis, D.H. Fairfield, and W.H. Mish (1995), The Global Geospace Science Program and its investigations, Space Sci. Rev. 71, 1–4, 5–21, DOI: 10.1007/BF00751323.

    Article  Google Scholar 

  • Bame, S.J., D.J. McComas, M.F. Thomsen, B.L. Barraclough, R.C. Elphic, J.P. Glore, J.T. Gosling, J.C. Chavez, E.P. Evans, and F.J. Wymer (1993), Magnetospheric plasma analyzer for spacecraft with constrained resources, Rev. Sci. Instrum. 64, 4, 1026, DOI: 10.1063/1.1144173.

    Article  Google Scholar 

  • Belian, R.D., G.R. Gisler, T. Cayton, and R. Christensen (1992), High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res. 97, A11, 16,897–16,906, DOI: 10.1029/92JA01139.

    Article  Google Scholar 

  • Daglis, I.A., E.T. Sarris, and G. Kremser (1990), Indications for ionospheric participation in the substorm process from AMPTE/CCE observations, Geophys. Res. Lett. 17, 1, 57–60, DOI: 10.1029/GL017i001p00057.

    Article  Google Scholar 

  • De Benedetti, J., A. Milillo, S. Orsini, A. Mura, E. De Angelis, and I.A. Daglis (2005), Empirical model of the inner magnetosphere H+ pitch angle distributions. In: T. Pulkkinen, N. Tsyganenko, and R. Friedel (eds.), The Inner Magnetosphere: Physics and Modelling, AGU Monograph Series 38, 283–291, AGU, Washington, D.C.

    Google Scholar 

  • De Michelis, P., I.A. Daglis, and G. Consolini (1999), An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res. 104, 28615–28624, DOI: 10.1029/1999JA900310.

    Article  Google Scholar 

  • Dessler, A.J., and E.N. Parker (1959), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res. 64, 12, 2239–2252, DOI: 10.1029/JZ064i012p02239.

    Article  Google Scholar 

  • Ebihara, Y., and M. Ejiri (2000), Simulation study on fundamental properties of the storm-time ring current, J. Geophys. Res. 105, A7, 15,843–15,859, DOI: 10.1029/1999JA900493.

    Article  Google Scholar 

  • Ebihara, Y., M. Ejiri, H. Nilsson, I. Sandahl, A. Milillo, M. Grande, J.F. Fennel, and J.L. Roeder (2002), Statistical distribution of the storm-time proton ring current: POLAR measurements, Geophys. Res. Lett. 29, 20, 1969, DOI: 10.1029/2002GL015430.

    Article  Google Scholar 

  • Ejiri, M. (1978), Trajectory traces of charged particles in the magnetosphere, J. Geophys. Res. 83, A10, 4798–4810, DOI: 10.1029/JA083iA10p04798.

    Article  Google Scholar 

  • Fok, M.-C., T.E. Moore, J.U. Kozyra, G.C. Ho, and D.C. Hamilton (1995), Three-dimensional ring current decay model, J. Geophys. Res. 100, A6, 9619–9632, DOI: 10.1029/94JA03029.

    Article  Google Scholar 

  • Fok, M.-C., T.E. Moore, and M.E. Greenspan (1996), Ring current development during storm main phase, J. Geophys. Res. 101, A7, 15,311–15,322, DOI: 10.1029/ 96JA01274.

    Article  Google Scholar 

  • Fok, M.-C., R.A. Wolf, R.W. Spiro, and T.E. Moore (2001), Comprehensive computational model of Earth’s ring current, J. Geophys. Res. 106, A5, 8417–8424, DOI: 10.1029/2000JA000235.

    Article  Google Scholar 

  • Ganushkina, N.Y., T.I. Pulkkinen, and T. Fritz (2005), Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys. 23, 579–591.

    Google Scholar 

  • Ganushkina, N.Y., T.I. Pulkkinen, A. Milillo, and M. Liemohn (2006), Evolution of the proton ring current energy distribution during April 21–25, 2001 storm, J. Geophys. Res. 111, A11S08, DOI: 10.1029/2006JA011609.

    Article  Google Scholar 

  • Gloeckler, G., F.M. Ipavich, W. Studemann, B. Wilken, D.C. Hamilton, G. Kremser, D. Hovestadt, F. Gliem, R.A. Lundgren, W. Rieck, E.O. Tums, J.C. Cain, L.S. Masung, W. Weiss, and P. Winterhof (1985), The Charge-Energy-Mass spectrometer for 0.3–300 keV/e ions on the AMPTE/CCE, IEEE Trans. Geosci. Remote Sens. GE-23, 234–240, DOI: 10.1109/TGRS.1985.289519.

    Article  Google Scholar 

  • Jordanova, V.K., L.M. Kistler, J.U. Kozyra, G.V. Khazanov, and A.F. Nagy (1996), Collisional losses of ring current ions, J. Geophys. Res. 101, A1, 111–126, DOI: 10.1029/95JA02000.

    Article  Google Scholar 

  • Jordanova, V.K., L.M. Kistler, C.J. Farrugia, and R.B. Torbert (2001), Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998, J. Geophys. Res. 106, A12, 29,705–29,720, DOI: 10.1029/2001JA000047.

    Article  Google Scholar 

  • Kistler, L.M., F.M. Ipavich, D.C. Hamilton, G. Gloeckler, B. Wilken, G. Kremser, and W. Stüdemann (1989), Energy spectra of the major ion species in the ring current during geomagnetic storms, J. Geophys. Res. 94, A4, 3579–3599, DOI: 10.1029/JA094iA04p03579.

    Article  Google Scholar 

  • Korth, A., G. Kremser, A. Roux, S. Perraut, J.-A. Sauvaud, J.-M. Bosqued, A. Pedersen, and B. Aparicio (1983), Drift boundaries and ULF wave generation near noon at geostationary orbit, Geophys. Res. Lett. 10, 8, 639–642, DOI: 10.1029/GL0l0i008p00639.

    Article  Google Scholar 

  • Korth, H., M.F. Thomsen, J.E. Borovsky, and D.J. McComas (1999), Plasma sheet access to geosynchronous orbit, J. Geophys. Res. 104, A11, 25,047–25,061, DOI: 10.1029/1999JA900292.

    Article  Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, and T.E. Cayton (2001a), Dominant role of the asymmetric ring current in producing the stormtime Dst, J. Geophys. Res. 106, A6, 10,883–10,904, DOI: 10.1029/2000JA000326.

    Article  Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, C.R. Clauer, and A.J. Ridley (2001b), Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms, J. Geophys. Res. 106, A12, 29,531–29,542, DOI: 10.1029/2001JA000045.

    Article  Google Scholar 

  • Lui, A.T.Y., and D.C. Hamilton (1992), Radial profiles of quiet time magnetospheric parameters, J. Geophys. Res. 97, 19,325–19,332, DOI: 10.1029/92JAO1539.

    Google Scholar 

  • McComas, D.J., S.J. Bame, B.L. Barraclough, J.R. Donart, R.C. Elphic, J.T. Gosling, M.B. Moldwin, K.R. Moore, and M.F. Thomsen (1993), Magnetospheric plasma analyzer: Initial three-spacecraft observations from geosyncronous orbit, J. Geophys. Res. 98, A8, 13,453–13,465, DOI: 10.1029/93JA00726.

    Article  Google Scholar 

  • McIlwain, C.E. (1986), A Kp dependent equatorial electric field model, Adv. Space Res. 6, 3, 187–197.

    Article  Google Scholar 

  • Milillo, A., and M.F. Marcucci (2007), Plasma sheet during dual lobe reconnection: a case study, IUGG XXIV General Assembly, Perugia, Italy, 2–13 July 2007, “Earth: Our Changing Planet”, poster.

  • Milillo A., S. Orsini, I.A. Daglis, S. Livi (1999), An empirical model of the ion distributions in the equatorial inner magnetosphere, Phys. Chem. Earth, Part C 24, 1–3, 209–214, DOI: 10.1016/S1464-1917(98)00030-0.

    Google Scholar 

  • Milillo, A., S. Orsini, and I.A. Daglis (2001), Empirical model of proton fluxes in the equatorial inner magnetosphere: Development, J. Geophys. Res. 106, A11, 25,713–25,729, DOI: 10.1029/2000JA900158.

    Article  Google Scholar 

  • Milillo, A., S. Orsini, D.C. Delcourt, A. Mura, S. Massetti, E. De Angelis, and Y. Ebihara (2003), Empirical model of proton fluxes in the equatorial inner magnetosphere: 2. Properties and applications, J. Geophys. Res. 108, A5, 1165, DOI: 10.1029/2002JA009581.

    Article  Google Scholar 

  • Milillo, A., S. Orsini, S. Massetti, and A. Mura (2006), Geomagnetic activity dependence of the inner magnetospheric proton distribution: An empirical approach for the 21–25 April 2001 storm, J. Geophys. Res. 111, A11S13, DOI: 10.1029/2006JA011956.

    Article  Google Scholar 

  • Milillo, A., M.F. Marcucci, and D. Delcourt (2008), Plasma sheet evolution following dual lobe reconnection, EGU General Meeting, Vienna, Austria, 13–18 April 2008.

  • Orsini, S., I.A. Daglis, M. Candidi, K.C. Hsieh, S. Livi, and B. Wilken (1994), Model calculation of energetic neutral atoms precipitation at low altitudes, J. Geophys. Res. 99, A7, 13,489–13,498, DOI: 10.1029/93JA03270.

    Article  Google Scholar 

  • Orsini, S., A. Milillo, and A. Mura (2004), Modeling the time-evolving plasma in the inner magnetosphere: An empirical approach, J. Geophys. Res. 109, A11216, DOI: 10.1029/2004JA010532.

    Article  Google Scholar 

  • Roederer, J.G. (1967), On the adiabatic motion of energetic particles in a model magnetosphere, J. Geophys. Res. 72, 3, 981–992, DOI: 10.1029/JZ072i003p00981.

    Article  Google Scholar 

  • Roeder, J.L., M.W. Chen, J.F. Fennell, and R. Friedel (2005), Empirical models of the low-energy plasma in the inner magnetosphere, Space Weather 3, S12B06, DOI: 10.1029/2005SW000161.

    Article  Google Scholar 

  • Sckopke, N. (1966), A general relation between the energy of trapped particles and the disturbance field over the Earth, J. Geophys. Res. 71, 3125–3130.

    Google Scholar 

  • Sheldon, R.B., and D.C. Hamilton (1993), Ion transport and loss in the Earth’s quiet ring current, 1. Data and standard model, J. Geophys. Res. 98, A8, 13,491–13508, DOI: 10.1029/92JA02869.

    Article  Google Scholar 

  • Vallat, C., N. Ganushkina, I. Dandouras, C.P. Escoubet, M.G.G.T. Taylor, H. Laakso, A. Massonı, J.-A. Sauvaud, H. Rème, and P. Daly (2007), Ion multinose structures observed by Cluster in the inner Magnetosphere, Ann. Geophys. 25, 171–190.

    Article  Google Scholar 

  • West, H.I.Jr., R.M. Buck, and J.R. Walton (1973), Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5, J. Geophys. Res. 78, 7, 1064–1081, DOI: 10.1029/JA078i007p01064.

    Article  Google Scholar 

  • Wilken, B., W. Weiss, D. Hall, M. Grande, F. Soraas, and J.F. Fennell (1992), Magnetospheric ion composition spectrometer onboard the CRRES spacecraft, J. Spacecr. Rockets 29, 4, 585–591, DOI: 10.2514/3.25503.

    Article  Google Scholar 

  • Zhang, Y., L.J. Paxton, T.J. Immel, H.U. Frey, and S.B. Mende (2003), Sudden solar wind dynamic pressure enhancements and dayside detached auroras: IMAGE and DMSP observations, J. Geophys. Res. 108, A4, 8001, DOI: 10.1029/2002JA009355.

    Article  Google Scholar 

  • Zhang, Y., L.J. Paxton, C.-I. Meng, D. Morrison, B. Wolven, H. Kil, and A.B. Christensen (2004), Double dayside detached auroras: TIMED/GUVI observations, Geophys. Res. Lett. 31, L10801, DOI: 10.1029/2003GL018949.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Milillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milillo, A., Orsini, S. Empirical modeling of the ring current. Acta Geophys. 57, 171–184 (2009). https://doi.org/10.2478/s11600-008-0063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0063-5

Key words

Profiles

  1. Anna Milillo